Concrete Masonry Passive House Design

W. Mark McGinley, Ph. D., PE FASTM, FTMS Briana Kozlowski, M.Sc.

> The Masonry Society Fall Meetings Nov 2023

Introduction

- DOE indicates that 50% and 60% of the total yearly energy cost of residential and commercial buildings, a significant energy use sector (30%). Is used to cool and heat.
- Passive House design is intended to reduce the amount of heat that is gained and lost within a structure.
- Although residential structures in the United States are typically constructed from light wood framing, many areas use residences with exterior wall systems assembled out of concrete masonry units (CMU's).
- Application of "Passive House" principals to the design homes with exterior concrete masonry walls on residential energy efficiency was investigated.

2

J.B. SPEED SCHOOL OF ENGINEERING

Introduction

- Used Holistic Energy Analysis Beopt 2.8 and 3.0Beta to investigate passive house design of homes.
- Used a prototype home to remove the home configuration variabilities from the analyses.
- NIST Prototype used as it was designed to be representative of typical one-story residences and was specifically intended for energy studies.

Introduction

4

The one story residential NIST prototype building: is a simple one-story, 3-bedroom, 2-bathroom, slab-on-grade detached house with no garage. The prototype is a 2009 IECC compliant wood framed home, 64 ft. x 25 ft., with 1,600 ft.² of conditioned floor area (CFA). In this study, the house was assumed oriented with the 64 ft. dimension east to west, and the 25 ft. dimension north to south. The first floor has 8 ft. high ceilings. The roof slope was assumed to be 4:12 with1 ft overhangs on the north and south sides.

Modelling

- Calibrated models against ٠ published results of the NIST home and ensured that the predicted yearly energy use was in typical ranges (DOE).
- Upgraded prototype with ٠ code prescriptive requirement - IRC 2009, 2018 and 2021.
- Started with wood exterior ٠ walls.

BEopt Input Categories	1A: Miami Florida	2A: Houston Texas	3B: Las Vegas Nevada	4A: Louisville Kentucky	4C: Seattle Washingto n	5A: Chicago Illinois	6A: Minneapoli s Minnesota	7: Duluth Minnesota
Wood Stud	Uninsulated , 2x4, 16" OC	Uninsulated, 2x4, 16" OC	R-13 Fiberglass Batt, 2x4, 16" OC	R-20 Fiberglass Batt, 2x4, 16" OC				
Wall Sheathing	R-10 XPS	R-10 XPS	R-10 XPS	R-5 XPS	R-5 XPS	R-5 XPS	R-5 XPS	R-5 XPS
Unfinished	R-30	R-49	R-49	R-60	R-60	R-60	R-60	R-60
Attic	Fiberglass, Vented	Fiberglass, Vented						
Slab	Uninsulated	Uninsulated	2' R-10 XPS (Horizontal Insulation)	4' R-10 XPS (Horizontal Insulation)	4' R-10 XPS (Horizontal Insulation)	4' R-10 XPS (Horizontal Insulation)	4' R-10 XPS (Horizontal Insulation)	4' R-10 XPS (Horizontal Insulation)
Window	Clear, double, thermal- break (U- value: .40; SHGC: .25)	Clear, double, thermal- break (U- value: .40; SHGC: .25)	Clear, double, thermal- break (U- value: .30; SHGC: .25)	Clear, double, thermal- break (U- value: .30; SHGC: .40)	Clear, double, thermal- break (U- value: .30; SHGC: .40			
Air Leakage	5ACH50	5ACH50	3ACH50	3ACH50	3ACH50	3ACH50	3ACH50	3ACH50

7

Some Results										
Prototype Home Energy Site Energy Use by Climate Zone (2021 code) and Heat Source										
City	State	Zone	Electric Furnace (MMBtu/yr)	Gas Furnace (MMBtu/yr)	Air Source Heat Pump (MMBtu/yr)					
Miami	Florida	1A	52.5	52.6	51.9					
Houston	Texas	2A	54.8	57.2	49.4					
Las Vegas	Nevada	3B	54.6	56.8	49.6					
Louisville	Kentucky	4A	61.1	66.2	51.2					
Seattle	Wash.	4C	65.4	72.7	49.4					
Chicago	Illinois	5A	79.7	90.2	60.3					
Minneapolis	Minnesota	6A	98	113.4	74.7					
Duluth	Minnesota	7	112.5	131.6	86.6					

Passive House Design

- Starting with 2021IRC design and Holistic energy Analysis – investigated home characteristics that had significant impact on yearly energy use both in lit search and holistic analysis for the various climates.
- Adjusted 2021 compliant prototype home models until the heating and cooling yearly energy use were less than or equal to 4.75kbtu/ft² per year (7.6 MMBtu heating or cooling energy for our prototype model).

11

Passive House Design- Wood

BEopt Input	1A:	2A:	3B:	4A:	4C:	5A:	6A:	7:
Categories	Miami Florida	Houston Texas	Las Vegas	Louisville	Seattle	Chicago Illinois	Minneapolis	Duluth
			Nevada	Kentucky	Washington		Minnesota	Minnesota
Wood Stud	Uninsulated,	Uninsulated,	R-13	R-20	R-20 Fiberglass	R-20 Fiberglass	R-20 Fiberglass	R-20 Fiberglass
	2x4, 16" o.c: R-	2x4, 16" o.c: R-	Fiberglass Batt,	Fiberglass Batt,	Batt, 2x4, 16"	Batt, 2x4, 16"	Batt, 2x4, 16"	Batt, 2x4, 16"
	21 Fiberglass	21 Fiberglass	2x4, 16" o.c.:	2x4, 16" o.c.:	o.c.: R-21	o.c.: R-21	o.c.: R-21	o.c.: R-21
	Batt, 2x4, 16"	Batt, 2x4, 16"	R-21	R-21	Fiberglass Batt,	Fiberglass Batt,	Fiberglass Batt,	Fiberglass Batt,
	0.C.	0.C.	Fiberglass Batt, 2x4, 16" o.c.	Fiberglass Batt, 2x4, 16" o.c.	2x4, 16" o.c.	2x4, 16" o.c.	2x4, 16" o.c.	2x4, 16" o.c.
Wall Sheathing	R-10: R-60	R-10: R-60	R-10: R-60	R-5: R-60	R-5: R-60	R-5: R-60	R-5: R-60	R-5: R-60
Exterior Finish	Vinyl, light	Vinyl, medium/dark	Vinyl, medium/dark	Vinyl, medium/dark				
Unfinished Attic	Ceiling R-38 Fiberglass, Vented	Ceiling R-60 Fiberglass, Vented						
Roof Material	Asphalt							
	Shingles, light	Shingles, medium	Shingles, medium	Shingles, Dark				
Slab	Under Slab 2'	Under Slab 2'	Under Slab 4'	Under Slab 4'	Under Slab 4'	Under Slab 4'	Whole Slab, R10	Whole Slab, R20
	R5 XPS	R5 XPS	R10- XPS	R10- XPS	R10- XPS	R10 XPS	XPS	XPS
Exterior Wall Mass	1/2" Drywall	1/2" Drywall	1/2" Drywall	5/8" Drywall	5/8" Drywall	5/8" Drywall	5/8" Drywall	2 x 1/2" Drywall
Partition Wall Mass	1/2" Drywall	1/2" Drywall	1/2" Drywall	5/8" Drywall	5/8" Drywall	5/8" Drywall	5/8" Drywall	2 x 1/2" Drywall
Ceiling Mass	1/2" Drywall	1/2" Drywall	1/2" Drywall	5/8" Drywall	5/8" Drywall	5/8" Drywall	5/8" Drywall	2 x 1/2" Drywall
Window Areas	15% of wall area	15% of wall area	15% of wall area	15% of wall area				
Windows	Clear, double,							
	thermal-break							
	(U-value: 0.40;	(U-value: 0.40;	(U-value: 0.30;	(U-value: 0.18;	(U-value: 0.23;	(U-value: 0.16;	(U-value: 0.13;	(U-value: 0.12;
	SHGC: 0.25)	SHGC: 0.25)	SHGC: 0.25)	SHGC: 0.40)	SHGC: 0.40)	SHGC: 0.60)	SHGC: 0.60)	SHGC: 0.60)
Interior	Summer = 0.7,							
Shading	Winter = 0.7							
Door Area	40 ft2							
Doors	wood, U-value:							
Air Lookogo	0.5 Dtu/h-R-ft ²	U.5 Dtu/h-R-ft ²	U.5 Dtu/h-R-ft ²	U.5 Dtu/h-R-ft ²	0.5 Dtu/h-R-ft ²	0.5 btu/h-R-ft ²	U.5 Dtu/h-R-ft ²	U.5 Dtu/h-R-ft ²
мп цеакаде	0.0401100	.UAGHOU	UACHOU	UACHOU	.UACHOU	.UACHOU	.UAGHOU	UACHOU.

Passive House Design – Wood

BEopt Input Categories	1A: Miami Florida	2A: Houston Texas	3B: Las Vegas Nevada	4A: Louisville Kentucky	4C: Seattle Washington	5A: Chicago Illinois	6A: Minneapolis Minnesota	7: Duluth Minnesota
Mechanical Ventilation	ERV, 70%							
Natural Ventilation	Cooling Months only, 3 days/week							
Air Source Heat Pump	SEER 18.1, 8.4 HSPF2	SEER 16.2, 7.7 HSPF2	SEER 16.2, 7.7 HSPF2	SEER 16.2, 7.7 HSPF2	SEER 16.2, 7.7 HSPF2	SEER 20.9, 8.9 HSPF2	SEER 20.9, 8.9 HSPF2	SEER 20.9, 8.9 HSPF2
Ducts	In Finished Space							
Cooling Set Point	77 F							
Heating Set Point	70 F							
Water Heater	Gas, tank, UEF=0.83							
Distribution	Insulated, PEX							
Water Heater Set Point	125 F							
Lighting	100% LED	100% CFL						
Refrigerator	Top freezer, EF = 21.9							
Cooking	Electric, 80%							
Range	usage							
Dishwasher	270 Rated kWh,	270 Rated kWh,	270 Rated	270 Rated	270 Rated	270 Rated kWh,	270 Rated kWh,	270 Rated kWh,
	80% usage	80% usage	kWh, 80% usage	kWh, 80% usage	kWh, 80% usage	80% usage	80% usage	80% usage
Clothes	IMEF=2.06,	IMEF=2.06,	IMEF=2.06,	IMEF=2.06,	IMEF=2.06,	IMEF=2.06, 80%	IMEF=2.06, 80%	IMEF=2.06, 80%
Washer	80% Usage	Usage	Usage	Usage				
Clothes Dryer	Electric,							
	CEF=3.73, 80%	CEF=3.73, 80%	CEF=3.73,	CEF=3.73,	CEF=3.73,	CEF=3.73, 80%	CEF=3.73, 80%	CEF=3.73, 80%
	Usage	Usage	80% Usage	80% Usage	80% Usage	Usage	Usage	Usage
Hot Water Fixtures	Multiplier of 1							
Plug Loads	Multiplier of 1							

13

City	State	Zone	Base Model Energy Use (MMbtu/year)	Passive Model Energy Use (MMbtu/yr)	Passive Model cooling Energy Use (MMbtu/yr)	Passive Model heating Energy Use (MMbtu/yr)	Passive Maximum heating/cooling energy	Passive House Principal Standard MAXIMUM
							(Kbtu/ft^2)	(Kbtu/ft^2)
Miami	FL	1A	51.3	29.8	7.1	0	4.43	4.75
Houston	TX	2A	48.2	29.3	5.1	.6	3.19	4.75
Las Vegas	Nevada	3B	49.8	30.4	5.5	1.09	3.43	4.75
Louisville	Kentucky	4A	55.1	32.0	2.9	3.4	2.13	4.75
Seattle	Washington	4C	48.2	30.1	.72	3.7	2.31	4.75
Chicago	Illinois	5A	63.9	33.2	1.9	4.9	3.06	4.75
Minneapolis	Minnesota	6A	79.1	36.2	1.3	7.0	4.38	4.75
Duluth	Minnesota	7	88.8	37.7	.9	7.0	4.38	4.75
								1

Some Results

Were able to achieve Passive House designs in all Climate Zones

Masonry Walls Passive Designs

- Using the Prototype Home 2021 configurations we replace the exterior walls with masonry walls
- Started with bare Masonry walls and then added external insulation until
- Then started changes like wood system until passive home performance obtained

16

Maimi – Variation in wall insulation almost no impact and bare walls can meet passive home performance

Masonry Walls Passive Designs

Louisville – Variation in wall insulation has an impact initially but tails off quite quickly. R 10 insulation gives maximum impact , beyond this there is little impact.

Note typical yearly energy cost savings are less than \$50 per year – Cost of 2in. of additional rigid insulation over \$1.5 SQFT or a total increase of \$1,400, a simple payback of 28 years+

18

Masonry Walls Passive Designs

Duluth – Variation in wall insulation has an impact initially but tails off quite quickly. R 10 insulation gives close to maximum impact, beyond this there is little impact.

Masonry Walls Passive Designs

20

Passive House Design

- All prototype homes met passive home limits of 4.75kbtu/ft² per year (7.6 MMBtu heating or cooling energy for our prototype model), in every climate using essentially the same configurations as the wood wall systems, except Climate Zone 7
- Study by Klingenberg at al (2016) suggest climate based limits for passive house more appropriate
- For Climate Zone they suggest a 7.9 kbtu/ft² per year. The CMU exterior wall configuration was well below this value

Conclusions

- Exterior Masonry Walls can be used with passive home designs with code prescritpive levels of insulation if place on the exterior face.
- This engages the thermal mass of exterior walls to help regulate the interior temperatures and store thermal energy
- Adding large amounts of insulation on the exterior masonry wall does not significantly impact energy use in the home and thus is not cost effective.

22

