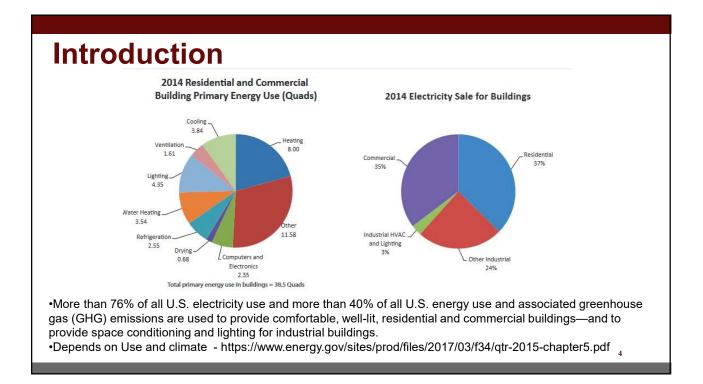

Energy Performance – What factors really matter in the design of masonry buildings

October, 14, 2021

W. Mark McGinley, Ph. D., PE, FASTM, FTMS TMS Annual Meeting Nashville , TN


Course Description

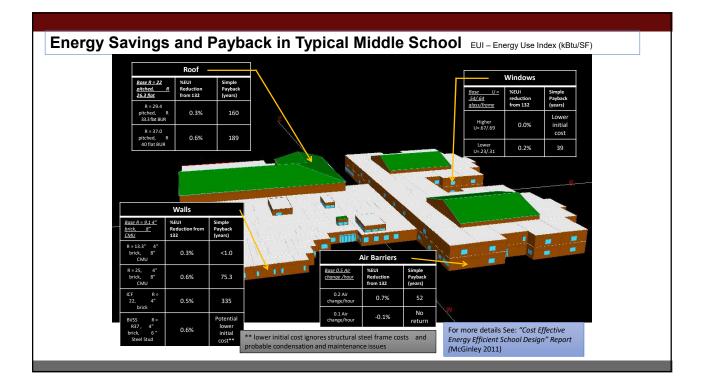
This presentation describes the factors that impact energy used in buildings typically constructed of masonry. The results of various studies that investigated energy use in a variety of prototype buildings will be presented and discussed. Guidance of impact of the thermal resistance of the building envelopes, fenestrations, thermal bridging, lights and HVAC systems will be discussed. Recommendations for cost effective energy performance will be presented.

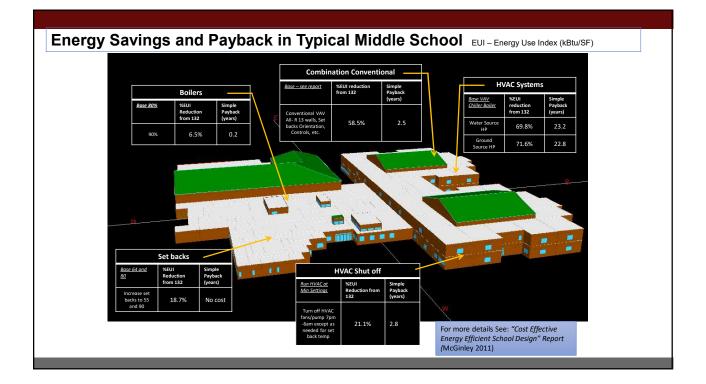
2

Learning Objectives

- Understand how buildings typically constructed of masonry use energy.
- Learn impact of changes in thermal resistance of building envelopes impact energy use.
- Understand what building systems have the greatest impact on energy use in typical applications.

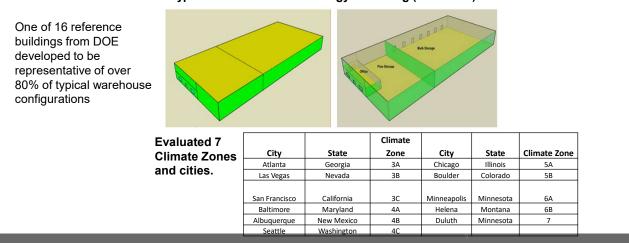
3

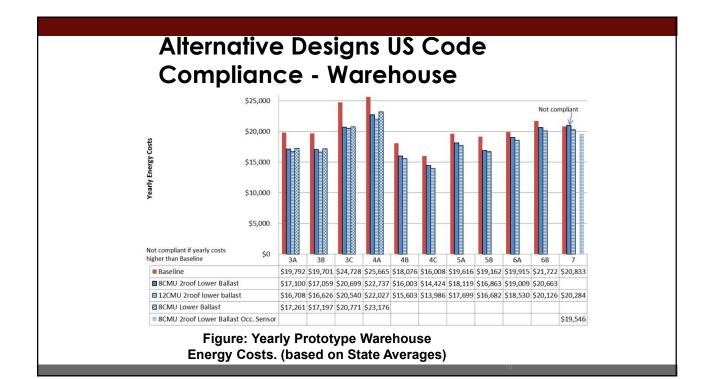

Building Envelope -


 About 60% of the heating load in commercial buildings is due to flow through the walls, foundations and roofs. Varies with climate and windows and air movements can be a significant contributor.

	I	Residential	c	Commercial	
Building component	Heating	Cooling	Heating	Cooling	
Roofs	1.00	0.49	0.88	0.05	
Walls	1.54	0.34	1.48	-0.03	
Foundation	1.17	-0.22	0.79	-0.21	
Infiltration	2.26	0.59	1.29	-0.15	
Windows (conduction)	2.06	0.03	1.60	-0.30	
Windows (solar heat gain)	-0.66	1.14	-0.97	1.38	

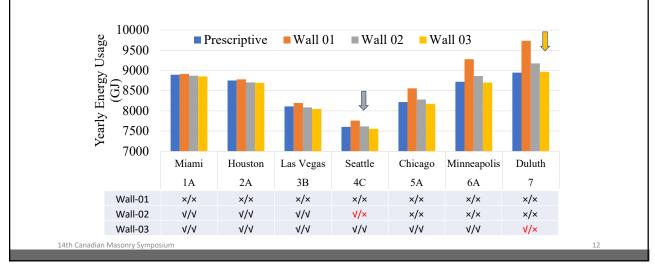
Looked at Schools In Climate Zone 4 -


- A prototype school building analyzed using Holistic analysis <u>–</u> <u>Energy Budget Method</u>
- Conducted an economic differential cost analysis Pay back and Self-funding
- Focused on envelope and then HVAC, lighting and controls started with 2004 energy code prescriptive values.



Looked at other Building types and climates Archetype 1 – Warehouse - US

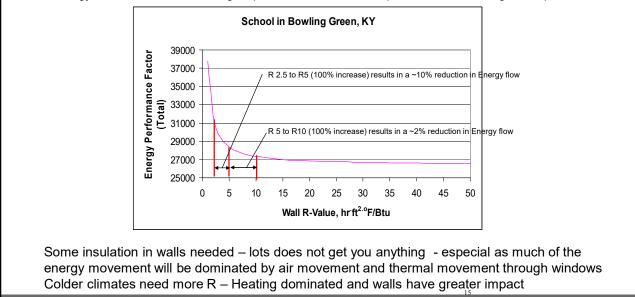
Prototype Warehouse for the Energy Modelling (≈50000 ft²)

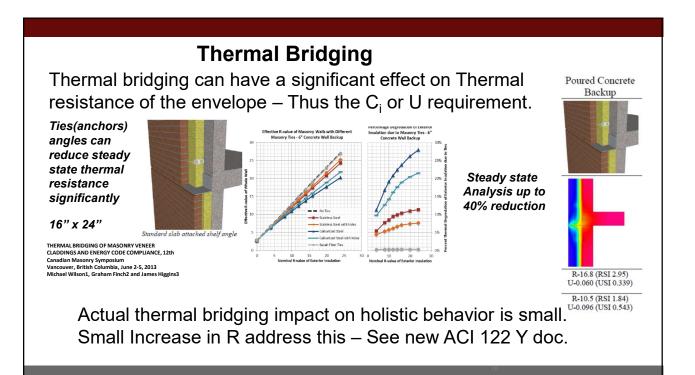

Holistic Analysis of the three protypes using different Masonry Wall densities and internal insulation

 Code compliant requirement for building envelopes in seven Climate Zones:

Climate Zone	City	Roof	Floor	Wall	Wall-01: 1.100
1A	Miami	0.273	1.828	0.863	
2A	Houston	0.221	0.608	0.863	
3B	Las Vegas	0.221	0.432	0.698	Wall-02: 0.591
4C	Seattle	0.182	0.432	0.591	
5A	Chicago	0.182	0.420	0.511	
6A	Minneapolis	0.182	0.363	0.454	
7	Duluth	0.159	0.312	0.403	Wall-03: 0.386

Energy usage of Secondary School prototype

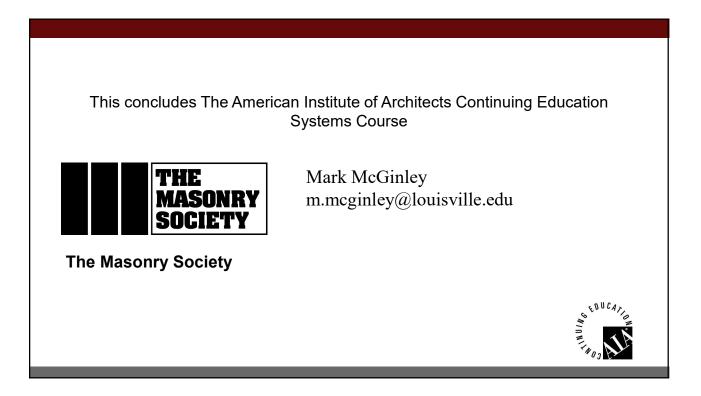



Impact of Wall Insulation ? More is not always better

Looked at Hawaiian Climate and insulation on exterior masonry walls

-		Stand-alone Retail		Secondary School		Midrise Apartment		Low Rise Apartment	
Wall	Description	Energy	Payback	Energy	Payback	Energy	Payback	Energy	Payback
Config.		Saved	Period	Saved	Period	Saved	Period	Saved	Period
		(\$/yr.)	(yr.)	(\$/yr.)	(yr.)	(\$/yr.)	(yr.)	(\$/yr.)	(yr.)
	Wall Replaced	-7460	31	-47038	25	-11224	27	-3098	31
105 pcf	Reflectance	-195	944	-8351	112	-3029	79	-421	181
Fully	Overhang	-7022	33	-34110	33	-9681	31	-2628	36
Grouted	Reflectance + Overhang	219	-	3591	-	-1671	139	-5	14579
	Double Roof Insulation	-5740	30	-39280	22	-10697	27	-2911	26
	Wall Replaced	-7141	33	-47479	25	-10159	30	-2815	35
120 pcf	Reflectance	-47	3918	-7605	123	-2199	109	-178	429
Poured	Overhang	-6638	35	-35551	32	-8651	35	-2329	41
Concrete	Reflectance + Overhang	320	-	4108	-	-844	275	234	-
	Double Roof Insulation	-5713	30	-40891	21	-9639	30	-2609	29
	Wall Replaced	-10513	22	-66843	18	-14176	22	-4073	24
150 pcf	Reflectance	-1596	115	-16367	54	-3796	63	-660	116
Poured	Overhang	-10056	23	-53701	21	-12569	24	-3602	26
Concrete	Reflectance + Overhang	-1153	157	-5589	156	-2494	93	-253	290
	Double Roof Insulation	-8564	20	-59523	14	-13672	21	-3894	19

Envelope Performance Factor (EPF) is a relative term that approximates the total heating and cooling energy associated with an average square foot of surface or square meter of building envelope



Conclusion

- Buildings in colder regions are more sensitive to building envelopes

 but an optimum U values (R) near code minimums will give good
 performance.
- Dynamic masonry wall energy flow relative insensitive to U values(R) near Code prescriptive levels.
- Buildings in colder regions are more sensitive to building envelopes R values
- HVAC, controls Lighting fenestration
- Holistic analysis can show masonry walls with relatively high U (low R values will produce cod compliant performance

14th Canadian Masonry Symposium

