Wall Design for In-Plane Loads & Seismic Detailing

TMS20210224

February 24, 2021

John M. Hochwalt, P.E., S.E., Director of Engineering, KPFF Consulting Engineers-Seattle Structural Group

The Masonry Society is a registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

2

Course Description

Shear walls are critical building elements to resist in-plane loads and are, for masonry, the seismic-force-resisting system. This session will review strength design of shear walls, along with both seismic detailing requirements and minimum/ maximum detailing requirements for such walls.

Learning Objectives

- Introduce masonry shear walls and applied loads on these critical elements
- Discuss seismic detailing requirements for masonry shear walls
- Review the strength design provisions for masonry shear walls for combined axial load and bending and for shear
- Overview maximum and minimum reinforcement limits and detailing of shear walls

Tonight's Road Map

- Wall Design Process
- Wall Detailing
- In-Plane Wall Design
- Special Topics Next week

Wall Design Process

- Architectural Functionality Determines Location and Extent of Masonry Walls
- Out-of-Plane Design
 - Estimate reinforcing (Session 3)
 - Consider detailing requirements (tonight)
 - Design for second order effects (Session3)
- In-Plane Design (tonight)

Wall Detailing

- Seismic Design Category
- Non-Participating Walls
- Participating Walls

Detailing - Seismic Design Category

- Determined by ASCE 7
- Based on Risk Category and Ground Motions
 - Risk category hazard to public, essential services
 - Ground motion history of seismic activity
- Ranges from A to F

Detailing – Non-Participating (A, B)

- Seismic Design Category A and B (TMS 7.4.1.1, 7.4.2)
 - Design as reinforced or unreinforced
 - No minimum area of steel
 - Must isolate in its own plane

Detailing – Non-Participating (C+)

- Seismic Design Category C and Higher (TMS 7.4.3.1, 7.4.4.1, 7.4.5.1)
 - Design as reinforced or unreinforced
 - Must reinforce in either horizontal or vertical direction
 - SDC D+: Minimum vertical steel increases
 - SDC E+: If not laid in running bond, horizontal reinforcement is required and is increased.
 - Must isolate in its own plane

Detailing – Participating (B+)

SDC B+:

- ASCE 7
 - Must pick a permitted wall type per ASCE 7 Table 12.2-1. Types:
 - Special reinforced masonry shear walls (F max)
 - Intermediate reinforced masonry shear walls (C max)
 - Ordinary reinforced masonry shear walls (C max)
 - Detailed plain masonry shear walls (B max)
 - Ordinary plain masonry shear walls (B max)
 - Must decide "Building frame" versus "Bearing wall"
 - "essentially complete space frame providing support for vertical loads."
 - Chapter 14 not adopted by IBC

Detailing – Participating (B+)

SDC B+ (continued):

TMS 402 Provides:

- Minimum detailing requirements based on wall type
- Minimum detailing and material requirements based on SDC
- Additional design requirements for special walls

SDC Based Requirements

- SDC D+
 - Type S or M Mortar:
 - Fully grouted: cement-lime, masonry cement, or mortar cement.
 - Partially grouted: cement-lime or mortar cement.
 - Lateral Ties: Anchor with 135 or 180 degree hook

De	etaili	ng –	Spe	cial	Rein	forc	ed	
■ Sp	pecial Wa	ılls – Miı	nimum R	einforce	ement Ra	atios		
	Vertical:	0.0007 of	f gross cro	ss section	nal area			
	Horizont	al:	-					
	Runni	ng Bond: 0.	0007					
	Not La	aid in Runni	ng Bond: 0.	0015				
	Total: 0.0	002						
	Reinforcement	6 in.	wall	8 in.	wall	12 in	. wall	
	0.0007	A _s (in.²/ft) 0.047	Possibilities	A _s (in.²/ft) 0.064	Possibilities No. 4 @ 32 in. No. 5 @ 48 in.	A _s (in.²/ft) 0.098	Possibilities No. 4 @ 24 in. No. 5 @ 32 in. No. 6 @ 48 in.	
	0.0010	0.068	No. 4 @ 32 in. No. 5 @ 48 in.	0.092	No. 4 @ 24 in. No. 5 @ 40 in. No. 6 @ 48 in.	0.140	No. 4 @ 16 in. No. 5 @ 24 in. No. 6 @ 32 in.	
	0.0013	0.088	No. 4 @ 24 in. No. 5 @ 40 in.	0.119	No. 4 @ 16 in. No. 5 @ 32 in.	0.181	No. 4 @ 8 in. No. 5 @ 16 in.	

21

In-Plane Wall Design

- Axial Design (done as part of out-of-plane)
- Flexure + Axial Design
- Shear Design
- Shear Friction Design

Flexure + Axial Design

Partially Grouted – Equivalent thickness

Table	6.2-1	Equivalent	Thickness	(in.)	foi
Partial	ly Gro	uted Walls, 8	in. Module		

Grout	Non	ninal Wall	Thickness	(in.)
Spacing	6	8	10	12
48 in.	2.62	3.39	3.74	4.09
40 in.	2.75	3.57	3.99	4.41
32 in.	2.94	3.83	4.37	4.89
24 in.	3.26	4.28	4.98	5.68
16 in.	3.88	5.17	6.23	7.28

Tables from TMS "Strength Design of Masonry"

Table 6.2-2 Equivalent Thickness (in.) forPartially Grouted Walls, 6 in. Module

Grout	Nominal Wall	Thickness (in.)
Spacing	6	8
48 in.	2.44	3.13
42 in.	2.53	3.25
36 in.	2.58	3.33
30 in.	2.70	3.50
24 in.	2.88	3.75
18 in.	3.17	4.17
12 in.	3.75	5.00

Flexure + Axial Design Smeared Reinforcement Model • Solve quadratic equation for depth of compression block, *a*: $\frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$ where $A = (\beta - 1)0.36f'_m t$ $B = 0.36f'_m t d_v - 0.5\beta P_u$ $C = -M_u$ Where B = 2.3 for Fy = 60, concrete masonry B = 2.0 for Fy = 60, clay masonry

Flexure + Axial Design

Smeared Reinforcement Model

• Solve for required area of steel per inch of wall length:

$$A_{s,re}^* _{d} = \frac{0.72f'_m at - P_u}{\phi f_y (d_v - \beta a)}$$

Flexure + Axial Design - Example

Special Reinforced Clay Masonry Shear Wall

- Nominal 6" units (5.5"), 6" module
- Running bond
- Partially grouted, assume t_{eq} = 2.75"
- *•f′_m* = 3000 psi
- Minimum P_u = 166 kips
- *M_u* = 2,800 kip-ft

Special Reinforced Clay Masonry Shear Wall

• Estimate reinforcing with lumped model: $A_{s,req'd}^* \sim \frac{M_u}{0.45f_y d_v^2} - \frac{P_u}{1.2f_y d_v}$ $A_{s,reqd}^* \sim \frac{(2880)(12)}{0.45(60)[(24)(12)]^2} - \frac{166}{1.2(60)(24)(12)}$

 $A_{s,regd} \sim 0.0154 - 0.0080 = 0.0074 \ in^2/in$

Flexure + Axial Design - Example

Special Reinforced Clay Masonry Shear Wall • Estimate reinforcing with smeared reinforcement model: $a = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{-689 \pm \sqrt{(689)^2 - 4(2.97)(34,560)}}{2(2.97)} = 42.4 in$ where $A = (\beta - 1)0.36f'_m t = (2 - 1)0.36(3)(2.75) = 2.97 kip/in$ $B = 0.36f'_m t d_v - 0.5\beta P_u = 0.36(3)(2.75)(24)(12) - 0.5(2)(166) = 689 kips$ $C = -M_u = 2880(12) = 34,560 kip - in$ where $\beta = 2.0$ for Fy = 60, clay masonry

Special Reinforced Clay Masonry Shear Wall

Estimate reinforcing with smeared reinforcement model:

$$A_{s,req'd}^* = \frac{0.72f'_m at - P_u}{\phi f_y(d_v - \beta a)} = \frac{0.72(3)(42.4)(2.75) - 166}{\phi(60)[(24)(12) - 2(42.4)]}$$

 $A_{s,re~'d}^* = 0.0078 \ in^2/in$

Try #5 @ $42'' = 0.0074 in^2/in$

Special Reinforced Clay Masonry Shear Wall

Table 6.2-2 Equivalent Thickness (in.) forPartially Grouted Walls, 6 in. Module

Grout	Nominal Wall	Thickness (in.)
Spacing	6	8
48 in.	2.44	3.13
42 in.	2.53	3.25
36 in.	2.58	3.33
30 in.	2.70	3.50
24 in.	2.88	3.75
18 in.	3.17	4.17
12 in.	3.75	5.00

Flexure + Axial Design - Example

Special Reinforced Clay Masonry Shear Wall

8 36"	7	6	5 42" Typical	4	3	2	36" 1

- Construct interaction diagram (Session 3)
- Example, *c* = 57.0 inches

Layer	Distance from comp. face, <i>d_i</i> (inch)	Strain, $\varepsilon_{si} = \varepsilon_{mu} \frac{d_i - c}{c}$	Stress, (ksi)	Force (kip)	Moment arm (in.)
3	81	0.00147	42.7	13.2	-63
4	123	0.00405	60	18.6	-21
5	165	0.00663	60	18.6	21
6	207	0.00921	60	18.6	63
7	249	0.01179	60	18.6	105
8	285	0.01400	60	18.6	141

Special Reinforced Clay Masonry Shear Wall

											Nomi Streng	nal įth	Desi Stren	gn gth
	c	с	T(1)	T(2)	T(3)	T(4)	T(5)	T(6)	T(7)	T(8)	Moment	Axial	Moment	Axial
	inch	kips	kip-ft	kips	kip-ft	kips								
axial compression											0	984	0	886
Points controlled by masonry	201.25	998	0.0	0.00	0.0	0.0	0.0	0.9	7.5	13.1	5,505	977	4,955	879
Balanced	179.12	888	0.0	0.00	0.0	0.0	0.0	4.9	12.2	18.6	5,708	853	5,137	767
Points controlled by steel	142.50	707	0.0	0.00	0.0	0.0	5.0	14.2	18.6	18.6	5,588	650	5,030	585
	114.00	565	0.0	0.00	0.0	2.5	14.1	18.6	18.6	18.6	5,135	493	4,622	444
	85.50	424	0.0	0.00	0.0	13.8	18.6	18.6	18.6	18.6	4,367	336	3,930	302
	71.25	353	0.0	0.00	4.3	18.6	18.6	18.6	18.6	18.6	3,857	256	3,472	230
	57.00	283	0.0	0.00	13.2	18.6	18.6	18.6	18.6	18.6	3,264	176	2,938	159
	42.75	212	0.0	0.00	18.6	18.6	18.6	18.6	18.6	18.6	2,623	100	2,361	90
	28.50	141	0.0	11.6	18.6	18.6	18.6	18.6	18.6	18.6	1,842	18	1,658	16
	22.80	113	0.0	18.6	18.6	18.6	18.6	18.6	18.6	18.6	1,489	-17	1,341	-15
	17.10	85	0.0	18.6	18.6	18.6	18.6	18.6	18.6	18.6	1,188	-45	1,069	-41
	11.40	57	0.0	18.6	18.6	18.6	18.6	18.6	18.6	18.6	876	-74	788	-66
	5.70	28	0.0	18.6	18.6	18.6	18.6	18.6	18.6	18.6	552	-102	497	-92
	5.70	28	0.0	18.6	18.6	18.6	18.6	18.6	18.6	18.6	552	-102	497	-92
	1.43	7	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6	84	-142	76	-128
axial tension		0	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6	0	-149	0	-134

Flexure + Axial Reinforcing Limits

- Methods to ensure ductility
 - ρ_{max} (Session 2)
 - Provide boundary elements
 - Demonstrate boundary elements aren't required
- Suggested order (easiest to hardest)
 - Compression stress check (TMS 9.3.6.6.4)
 - Screening checks (TMS 9.3.6.6.1)
 - If special wall with inelastic drift less than 0.5%, compression strain check (TMS 9.3.6.6.3)
 - Else, ρ_{max} (TMS 9.3.3.2)

Flexure +	Axial	Reinforcing	Limits
-----------	--------------	-------------	--------

■ ρ_{max} Check (тмs 9.3.3.2)

Table 6.3.4-1 Required α Based on Element Type

Element Type $M_u/V_u d_v < 1$ $M_u/V_u d_v \ge 1$ Other Than Shear WallsNo LimitDetailed Plain and Ordinary Reinforced Shear1.5	1
Other Than Shear WallsNo LimitDetailed Plain and Ordinary Reinforced Shear1.5	
Detailed Plain and Ordinary 1.5 Reinforced Shear	
Walls	
Intermediate Reinforced Shear Walls	
Special Reinforced Shear Walls	

- Solve for P_n for that neutral axis location, using steel in compression.
- If $P_n \ge P$ from D + 0.75L + 0.525Q_E

Colui	Reinior	ced Clay Ma	isonry Shea	Wall (continued)
o _{max} C	heck (TN	1S 9.3.3.2)			
 Wa 	ll is parti	ally grouted –	can't use equa	tions.	
Tabl Dist	le 6.3.4-2 ance to Ex	Ratio of Depth to treme Tension Re	o Neutral Axis to einforcement	_	
	α	c/d_t , CMU	c/d_t , Clay]	
	1.5	0.446	0.530]	
	3	0.287	0.360]	
	4	0.232	0.297]	

Shear Design

- Shear Capacity
 - Same concepts/equation as Session 2
 - Partially grouted shear walls: γ_g =0.75
- Shear Demands
 - Special walls: Shear Capacity Design
- Detailing
 - Joint reinforcing: Minimum area of steel
 - 180 degree hook required at ends of walls
 - Special walls: Special provisions

Shear Design - Capacity

$$V_n = (V_{nm} + V_{ns})\gamma_g$$

$$V_{nm} = \left[4.0 - 1.75 \frac{M_u}{V_u d_v}\right] A_{nv} \sqrt{f'_m} + 0.25 P_u$$

$$V_{ns} = 0.5 \left(\frac{A_v}{s}\right) f_y d_v$$

$$\frac{M_u}{V_u d_v} \ge 1.0: \qquad \frac{M_u}{V_u d_v} \le 0.25:$$

$$V_n = (4A_{nv}\sqrt{f'_m})\gamma_g \qquad V_n = (6A_{nv}\sqrt{f'_m})\gamma_g$$

- d_v = actual depth of masonry
- A_{nv} = net shear area = bd_v
- γ_g = 0.75 (partially grouted walls only)
- φ= 0.8

•
$$\frac{M_u}{V_u d_v} \le 1.0$$

• Interpolate as required

Shear Design – Special Walls Demand

- Shear Capacity Design (TMS 7.3.2.6.1.1)
 - Either:
 - Ensure plastic hinge: $\phi V_n > \frac{1.25}{M_u} V_u$, or
 - Design for essentially elastic response: $V_n \ge 2.5V_u$
 - Note, M_n:
 - Must be an upper bound; use largest P_u associated with V_u
 - Must include all reinforcing contributing to capacity
 - Often 2.5V_u is not much greater; much easier to calculate.

Shear Design – Special Walls Detailing

- Special Shear Wall Detailing (TMS 7.3.2.6.1.1)
 - If reinforcing is required to resist shear, then
 - Spacing, minimum of:
 - 1/3 wall height
 - 1/3 wall length
 - 48" for running bond
 - 24" for non laid in running bond:
 - Joint reinforcing not permitted (shall be embedded in grout)
 - Vertical reinforcement must be at least 1/3 of shear reinforcement
 - 180-degree hook in Chapter 6 controls over "standard hook"

Shear Design - Example

Special Reinforced Clay Masonry Shear Wall

- What to do?
 - Increase f'_m?
 - Increase wall thickness?
 - Fully grout?
- Elected to fully grout
 - Mass increased, V_u = 87 kips
 - Redo flexural design (#5 @ 36"), including ductility checks
 - Minimum P_u = 180 kips

Shear Design - Example

Special Reinforced Clay Masonry Shear Wall

- Shear Capacity Design (TMS 7.3.2.6.1.1)
 - Design for essentially elastic response: $V_n \ge 2.5V_u = 2.5(87) = 218 kips$
 - Check upper bound on V_n

$$\frac{M_u}{V_u d_v} = \frac{3400}{(87)(24)} = 1.62 \ge 1.0:$$

$$V_n \le (4A_{nv}\sqrt{f'_m})\gamma_g = 4(5.5)(288)\sqrt{3000}(1.0) = 347kips$$
 OK

Shear Design - Example

Special Reinforced Clay Masonry Shear Wall

- Shear Capacity Design (TMS 7.3.2.6.1.1)
 - Determine V_{nm}

$$V_{nm} = \left[4.0 - 1.75 \frac{M_u}{V_u d_v}\right] A_{nv} \sqrt{f'_m} + 0.25 P_u$$

 $V_{nm} = [4.0 - 1.75(1.0)](5.5)(288)\sqrt{3000} + 0.25(180,000)$

 $V_{nm} = 240 \ kips$

No reinforcement is required to resist shear.

Shear Friction Design - Capacity

Shear Friction Design (TMS 9.3.6.5)

Check at interfaces (e.g. foundation)

$$\frac{M_u}{V_u d_v} \le 0.50:$$

$$V_{nf} = \mu(A_{sp}f_y + P_u) \ge 0$$

$$\frac{M_u}{V_u d_v} \ge 1.0:$$

$$V_{nf} = 0.42f'_m A_{nc}$$

- $\mu = \text{coefficient of friction3}$
 - 0.7 unfinished concrete
 - 0.7 intentionally roughened concrete
 - 1.0 all other conditions
- A_{sp} = shear friction reinforcement
 Not additive
- A_{nc} = bc (calculate neutral axis depth)
- φ= 0.8
- Interpolate as required

Shear Friction Design - Capacity

- Shear Friction Design (TMS 9.3.6.5)
 - Approximation for $\frac{M_u}{V_u d_v} \ge 1.0$:
 - Option 1: Estimate c for A_{nc}

$$c \sim \frac{A_s f_y + P_u}{0.64 f'_m t_{sp}}$$

Option 2: Use ASD equation

$$V_{nf} = 0.65(0.6A_{sp}f_y + P_u)$$

- A_s = assume # bars yielded
 - Smaller # is conservative
 - Can assume bars at 2c and further have yielded

