Design of Beams

TMS20210210

February 10, 2021

Richard M. Bennett, Ph.D., P.E., FTMS Professor University of Tennessee

The Masonry Society is a registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

This session will review the design of masonry beams and lintels, including an examination of whether arching action can be used to reduce the loads on these elements. Deflection calculations will be reviewed, along with detailing requirements to meet code minimum and maximum reinforcement percentages. Deep beam requirements will also be covered.

Learning Objectives

- Introduce the design masonry beams and lintels for bending moment and shear
- Describe deflection calculations for beams and lintels
- Review maximum and minimum reinforcing provisions
- Examine arching and discuss when it can be used

Determination of Loads, Shears, and Moments

- Arching
- Beam Depth
- Beam Span

Beams

Strength Design Guide 6.3.1; TMS 402 9.3.4.2

- $P_u \le 0.05 A_n f'_m$ (TMS 402 9.3.4.2.1)
- The variation in longitudinal reinforcing bars in a beam shall not be greater than one bar size. Not more than two bar sizes shall be used in a beam. (TMS 402 9.3.4.2.1.1)
- Beams are required to be fully grouted (TMS 402 9.3.4.2.4)

Flexural Design

- Design Moment Strength
- Flexural Design
- Minimum/Maximum Reinforcement
- Beam Construction

Minimum Reinforcement

Strength Design Guide 6.3.1.3; TMS 402 Section 9.3.4.2.2.2, 9.3.4.2.2.3

• $M_n \ge 1.3M_{cr}$, or $M_u \ge 1.17M_{cr}$

•
$$M_{cr} = f_r \frac{bh}{6} = f_r \frac{bh}{6}$$

• or $A_s \ge (4/3)A_{s,reqd}$

- M_{cr} = cracking moment f_r = modulus of rupture b = thickness $h = d_v$ = depth of beam
- Mortar Type Flexural Tension Stress Parallel to Bed PCL or mortar cement Masonry Cement Joint M or S Ν M or S Ν Running bond; fully grouted 267 200 160 100 Not laid in running bond; continuous 335 335 335 335 grout section parallel to bed joints 19

Maximum Reinforcement

Strength Design Guide 6.3.1.2; TMS 402 Section 9.3.3.2

$$\rho_{max} = \frac{0.8(0.8)f'_m}{f_y} \left(\frac{\varepsilon_{mu}}{\varepsilon_{mu} + 1.5\varepsilon_y}\right)$$

Steel Ratio	Grade 60 steel		
	Clay	CMU	
$ ho_{ m max}$ (f_m' in ksi)	$0.00565 f'_m$	0.00476 <i>f</i> ''	
<i>f_y</i> = 60 ksi	<i>f</i> '' _m = 3 ksi	f'_m = 2 ksi	
	0.01697	0.00952	

Effective Moment of Inertia

Strength Design Guide 6.3.1.1; TMS 402 Section 5.2.1.4

$$I_{eff} = I_n \left(\frac{M_{cr}}{M_a}\right)^3 + I_{cr} \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right]$$
$$I_{cr} = \frac{bk^3 d^3}{3} + nA_s (d - kd)^2$$
$$k = \sqrt{(n\rho)^2 + 2n\rho} - n\rho$$
$$\rho = \frac{A_s}{bd} \qquad n = \frac{E_s}{E_m}$$

 I_n = net moment of inertia I_{cr} = cracked moment of inertia M_{cr} = cracking moment M_a = Moment under allowable stress level loads n = modular ratio, E_s/E_m k = depth to neutral axis under allowable stress assumptions

23

Deflection Requirements

Strength Design Guide 6.3.1.1; TMS 402 Section 5.2.1.4

- Deflection of beam or lintels supporting unreinforced masonry is limited to *L*/600, where *L* is span length (TMS 402 5.2.1.4.1)
- Deflections of approximately *L*/300 needed to be visible.
- Deflections do not need to be checked when $L \le 8d$ (TMS 402 5.2.1.4.3).

Shear

- Shear strength
- Stirrups
- Chapter 8: shear at d/2

Shear Strength Strength Design Guide 6.2.4.1; TMS 402 Section 9.3.4.1.2

Assume $M_u/(V_u d_v) = 1.0$

$$V_n = V_{nm} + V_{ns}$$

$$V_{nm} = 2.25 A_{nv} \sqrt{f'_m}$$

$$V_{ns} = 0.5 \left(\frac{A_v}{s}\right) f_y d_v$$

$$V_n \le 4A_{nv}\sqrt{f_m'}$$

- d_v = actual depth of masonry
- A_{nv} = net shear area = bd_v
 - Many designers use d instead of d_{ν} for beams; clarified in 2022 TMS 402
- ϕ = 0.8

26

Stirrups

Strength Design Guide 6.3.1; TMS 402 Section 9.3.4.2.3

- a) Single bar with 180-degree hook at each end
- b) Hook shear reinforcement around flexural reinforcement
- c) Minimum area of shear reinforcement is $0.0007bd_{v}$
 - Interpreted as $A_v/s \ge 0.0007b$
- d) First bar within $d_v/4$
- e) Maximum spacing is $d_v/2$ or 48 in.

$$d_{min} = \frac{V_u}{1.8b\sqrt{f_m'}}$$
 for no shear reinforcement

Shear at *d*/2

Strength Design Guide 6.4.3.4; TMS 402 Section 8.3.5.4

Sections within d/2 from face of support can be designed for shear at d/2 (TMS 402 8.3.5.4): (moved to Chapter 5 in 2022 TMS 402)

- A. Noncantilever beam
- B. Reaction introduces compression into end region of member
- C. No concentrated load between d/2 and face of support

Design Example

Beam Design

Design Example: Beam Depth

Strength Design Guide Example 6.3.1.8

Factored shear, V_u

$$V_u = \frac{1,709\frac{lb}{ft}(16.67ft)}{2} = 14,240lb$$

Minimum depth to avoid shear reinforcement

$$d_{min} = \frac{V_u}{1.8b\sqrt{f_m'}} = \frac{14,240lb}{1.8(7.625in.)\sqrt{2,000psi}} = 23.2in.$$

- 32 in. deep beam is needed
- Prescriptive seismic reinforcement would be needed in top course
- Rather than leave one course ungrouted, fully grout entire height of beam
- Shear strength OK by inspection

Design Example: Sharpen Pencil

Strength Design Guide Example 6.3.1.8

Try 24 in. deep beam, d = 20 in. Check V_u at d/2 from face of support

d/2 from face of support

 $(4in. +20in.) \frac{1ft}{12in.} = 2.0ft$

Factored shear, V_{μ}

 $V_u = 14,240lb \frac{8.33ft}{8.33ft} = 14,240lb(0.76) = 10,820lb$

$$d_{min} = \frac{V_u}{1.8b\sqrt{f'_m}} = \frac{10,820lb}{1.8(7.625in.)\sqrt{2,000psi}} = 17.6in.$$

- A 24 in. deep beam will work
- In this example, most engineers would still fully grout the beam, rather than have two ungrouted courses.

Desig Strength Design	n Example: Shear	
Factored shear, V_u	$V_u = \frac{3,910\frac{lb}{ft}(16.67ft)}{2} = 32,600lb$	
Shear area, A_{nv}	$A_{nv} = 7.625in.(40in.) = 305in.^2$	
Check max V_n	$\phi(V_n)_{max} = 4A_{nv}\sqrt{f_m'} = 0.8(4)(305in.^2)\sqrt{2000psi} = 43,600lb$	ОК
Nominal strength masonry, V_{nm}	$V_{nm} = 2.25 A_{nv} \sqrt{f'_m} = 2.25(305in.^2) \sqrt{2,000psi} = 30,700lb$	
Req'd strength reinf., V_{ns}	$V_{ns,reqd} = \frac{V_u}{\phi} - V_{nm} = \frac{32,600lb}{0.8} - 30,700 = 10,100lb$	
		40

Design Example: Shear

Strength Design Guide Example 6.3.1.9

Try No. 3 bars for stirrups (deformed wire could also be used).

Spacing, s

g, s

$$V_{ns} = 0.5 \left(\frac{A_v}{s}\right) f_y d_v \Rightarrow s = \frac{0.5A_v f_y d_v}{V_{ns}} = \frac{0.5(0.11in.^2)(60,000psi)(48in.)}{10,100lb} = 15.7in.$$
Try No. 3 at 8 in.

Detailing requirements

- $A_v/s = 0.11in^2/8in = 0.0138in \ge 0.0007b = 0.0007(7.625in) = 0.0053in$.
- First bar located not more than $d_v/4 = 48in./4 = 12in$.
- Maximum spacing of $\min\{d_v/2, 48in.\} = \min\{48in./2, 48in.\} = 24in.$

Design Example 5.3.18ASD load $w = D + L = (2,000 \frac{lb}{ft} + 324 \frac{lb}{ft}) + 700 \frac{lb}{ft} = 3,020 \frac{lb}{ft}$ ASD
Moment, M_a $M_a = \frac{wL^2}{8} = \frac{3,020 \frac{lb}{ft} (16.67ft)^2}{8} \frac{12in}{ft} = 1,259,000in. \cdot lb$ Cracking
Moment, M_{cr} $M_{cr} = 782,000in. \cdot lb$ (from minimum reinforcement calc)Effective
Moment of
Inertia, I_{eff} $I_{eff} = I_n \left(\frac{M_{cr}}{M_a}\right)^3 + I_{cr} \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right]$ Hereia, I_{eff} $70,270in.^4 \left(\frac{782in.\cdot k}{1,259in.\cdot k}\right)^3 + 14,140in.^4 \left[1 - \left(\frac{782in.\cdot k}{1,259in.\cdot k}\right)^3\right] = 27,590in.^4$

Strength Design Suide Examp

Deflection, $\delta = \frac{5wL^4}{384EI} = \frac{5(3,020\frac{lb}{ft})(16.67ft)^4}{384(1,800,000psi)(27,590in.^4)} \frac{1728in.^3}{1ft^3} = 0.106in.$

Allowable δ

 $\frac{L}{600} = \frac{16.67ft}{600} \frac{12in.}{ft} = 0.333in.$ OK

Quick check using cracked moment of inertia, δ = 0.206 in.

- Internal Lever Arm
- Miscellaneous Requirements
- Example

46

Internal Lever Arm

Strength Design Guide 6.3.3.6; TMS 402 Section 5.2.2.1, 5.2.2.2

Definition (TMS 402 2.2)

- $\frac{l_{eff}}{d_{v}} \leq \begin{cases} 3 & \text{continuous span} \\ 2 & \text{simple span} \end{cases}$
- Effective span length, l_{eff} , smaller of:
- · center-to-center distance between supports
- 1.15 multiplied by the clear span

z – internal lever arm		
Simple spans	ans Continuous spans	
$1 \le \frac{l_{eff}}{d_v} < 2$ $z = 0.2(l_{eff} + 2d_v)$	$1 \le \frac{l_{eff}}{d_v} < 3$ $z = 0.2(l_{eff} + 1.5d_v)$	
$\frac{l_{eff}}{d_v} < 1 z = 0.6 l_{eff}$	$\frac{l_{eff}}{d_v} < 1 z = 0.5 l_{eff}$	
	47	

Miscellaneous Requirements

Strength Design Guide 6.3.3.6; TMS 402 Section 5.2.2.3, 5.2.2.4, 5.2.2.5

- Flexural reinforcement
 - distributed flexural reinforcement for half beam depth
 - maximum spacing of one-fifth d_v or 16 in.
 - joint reinforcement can be used as flexural reinforcement
 - horizontal reinforcement anchored to develop yield strength at face of supports
- Shear reinforcement (when required)
 - minimum area of vertical reinforcement is 0.0007 bd_{v}
 - horizontal shear reinforcement area ≥ half vertical shear reinforcement
 - maximum spacing of shear reinforcement one-fifth d_v or 16 in.
- Total reinforcement: sum of horizontal and vertical reinforcement at least $0.001 b d_v$.

Design Example

Strength Design Guide Example 6.3.1.7

Given:

- 10 ft opening
- 6 ft deep beam
- superimposed dead load = 3.0 kip/ft
- live load = 2.0 kip/ft
- Grade 60 steel
- Type S masonry cement mortar
- 8 in. CMU
- f'_m = 2000 psi

C/C between supports = 10 ft + 2(4 in.) = 10.67 ft 1.15(clear span) = 1.15(10 ft) = 11.5 ft Effective span length, l_{eff} = min(10.67, 11.5) = 10.67 ft

Span ratio, l_{eff}/d_v

$$\frac{l_{eff}}{d_v} = \frac{10.67ft}{6ft} = 1.78 \le 2$$

Therefore a deep beam

Design Example: Flexure

Strength Design Guide Example 6.3.1.7

Beam Weight: Assume fully grouted, medium weight units; 81 psf Weight = 81psf(6ft) = 0.486 k/ft

Factored load, w_u

$$w_u = 1.2D + 1.6L = 1.2\left(3.0\frac{\kappa}{ft} + 0.486\frac{\kappa}{ft}\right) + 1.6\left(2.0\frac{\kappa}{ft}\right) = 7.38\frac{\kappa}{ft}$$

Factored
moment,
$$M_u = \frac{7.38 \frac{k}{ft} (10.67 ft)^2}{8} = 105.0 k \cdot ft$$

Internal lever $z = 0.2(l_{eff} + 2d_v) = 0.2(10.67ft + 2(6ft)) = 4.53ft$ arm, z

50

Design Example: Flexure

Strength Design Guide Example 6.3.1.7

Req'd
$$A_s$$
 $A_{s,reqd} = \frac{M_u/\phi}{zf_v} = \frac{105.0k \cdot ft/0.9}{4.53ft(60ksi)} = 0.429in.^2$

Using standard beam theory would have $A_{s,reqd}$ underestimated by 14%.

Although 1-#6 could be used, use 2-#5, one in each of bottom two courses

- reduces development length and extension of bars beyond face of support
- helps with requirement of distributed reinforcement

