

June 16-19, 2019 • Salt Lake City, UT, USA

Innovation in Masonry Today

Peter Roberts

Spherical Block LLC

Innovations already underway

- Concrete Block to make roofs
 - Arches, domes, flying buttresses

- Concrete Block to make boats
 - Vessels, ships, barges

Concrete Block to make Spheres

Outline

- What is Innovation?
 - Speak to both:
 - innovators
 - Users of Innovation
- Revolutionary vs. Incremental
- Sources of Innovation
- Personal Experience
- History and Results
- Future of Innovation in Masonry
- Conclusions and Recommendations
- Q&A

What is Innovation?

- Something NEW
- Does not exist yet
- Must be imagined first
- Occurs in the prefrontal cortex
- Based on what is known

Innovation is based on what is known

- Broad base of knowledge
- Open to new experiences
- New to a field
 - Free from preconceptions
- Willingness to be wrong

Gradual innovation

- Incremental
- Occurs in small steps
- Adjustments
- Optimization
 - Example: Typical CMU

Revolutionary Innovation

- Major change
- Fundamentally different
- Disruptive
 - Creates a new model
 - New paradigm
 - Example: CMU to make arches

Innovation requires BOTH

- Revolutionary Idea
 - New concept introduced
- Incremental changes
 - Optimize a better way
 - Development

Large teams develop and small teams disrupt science and technology

- Nature 566, pp. 378-382 February, 2019
- Authors: Lingfei Wu, Dashun Wang & James A. Evans
- Universal trend in science and technology today
- Growth of large teams in all areas
- Solitary researchers and small teams diminish in prevalence

Analyzed more than 65 million

- papers, patents and software products 1954–2014
- smaller teams have tended to disrupt science and technology with new ideas and opportunities
- larger teams have tended to develop existing ones

Time span of Innovation

- Work from larger teams builds on more-recent and popular developments, and attention to their work comes immediately.
 - Example: Increasing computer speeds & capacity
- Contributions by smaller teams search more deeply into the past, are viewed as disruptive to science and technology and succeed further into the future—if at all.
 - Example: Creation of internet

Both large and small teams are necessary for success

- small teams known for disruptive work
- large teams for developing work
- Together create a flourishing ecology for innovation

Psychology of Innovation

- Born to Rebel
- Author Frank Sulloway, 1996
- Birth order and revolutionary ideas
- Youngest (last born) source of revolutionary ideas
- Oldest (first born)
 - Conservative, power figures
 - Example: Darwin himself
- Darwinian mechanism
 - Getting parents attention

Paradigm Shift

- The Structure of Scientific Revolutions
- Thomas Kuhn, 1962
- Previously "normal scientific progress"
 - Viewed as "development by accumulation"
 - Incremental changes
- Kuhn's idea: New Model introduced
 - Paradigm shift
 - Revolutionary
 - Example: Copernicus
- Huge resistance to new ideas by established science

Sources of Innovation

- Active research
 - Focused, linear
 - Typically performed by larger teams
 - Example: Seismic Design for Masonry
- Interdisciplinarian
 - Other fields, new perspectives
 - Example: Francis Straub, Cinderblock
- Biomimicry
 - Look to nature
 - Example: turtle/tortoise shell, ceramic dome; VelcroTM
- "Out of Nowhere"
 - Unexpected, a door opens
 - Informed by what is known
 - Microwave ovens
- Uncovering Something vs. Pure Invention
 - Catenary arch, Robert Hooke

My Own Experience

- Cathedrals of Europe
 - As a child: huge impression
- This was masonry!

- Wal-Mart vs. Notre Dame
- This was modern architecture
- Can't we do better?

My Own Experience

- Informed by art
 - Curious
 - Read books
- Worked as a potter
- Went on to study ceramic engineering
- Large scale facilities to make things
 - Alfred University
 - NYS College of Ceramics

My Own Experience

- Gained knowledge about ceramics
 - Inorganic
 - Non-metallic
 - Crystalline
 - Heat treated
- Concrete is ceramic
- A ceramic house?

A Ceramic House?

- An outlandish idea
- "Quantity has a quality all its own"
 - Very big vs. very small
- Began on the Potter's wheel
- An engineering challenge
- Instantly mocked

NO

- Get used to it.
- No
- No
- No
- "You can't do that"
- Echoes of:
 - Copernicus
 - Darwin

NO. NO. NO.

- Academics
 - Physics Teacher, John Stull
- Business leaders
- Architects
- Investors
- Friends

Evolution of the idea

- Began as big pot
- Ram press
 - Clay bricks
 - Time consuming
- How else?
- Concrete?
- Concrete Block?

Research

- Go to first sources
- What if there are none?
- Keep asking
- "No" (get used to it)
- Think:
 - Basic Principles
 - Fundamental
- Go back into time
 - Deep time, archaeological

Do it

- Make the thing
- Experiment
- You can do it

How to get support for innovation?

- Believe in yourself
- Make yourself expert
- Obtain credentials
- Learn
 - Do research
- Talk to others in the field
- Evangelize
 - Convert others

How to get support?

- Establish Technical Standard
- Obtain Critical Mass
- Network
 - Social Media
 - Blog
 - Vlog

Where to go for support?

- Your own resources
- Friends and Family
- Trade Groups
- Government agencies
 - NYSERDA
 - State
 - National Science Foundation
 - Federal

New York State Energy Research & Development Authority

- NYSERDA
- Funded Kiln & Furnace research
- Gained much experience
- Learned a lot

National Science Foundation (NSF)

- World's largest seed fund
- Invest in disruptive technology
- Want:
 - Inherent risk
 - Revolutionary ideas
 - Disruptive technology
- Don't want:
 - Incremental change
 - "Safe bet" technology

NSF: Benefits

- Prestige
- Other Innovators
- Culture of encouragement
- Learn about Business side
 - Investors
 - Financial Projections
- "Shark Tank"
 - Real world examples
- High Standards

Spherical Block LLC

- Use of manufactured block to make roofs
 - Arches
 - Domes
 - Flying buttresses
 - Complete Spheres
 - Storage tanks
 - Septic tanks
 - Bridges
 - Ships, vessels, barges

Spherical Block LLC

- ICC-ES
 - Evaluation
 - Worked with:
 - P.E.
 - R.D.P.

- Designed "Test" or "Sample" Building
- Show all calculations
- Establish Design Methodology

Spherical Block LLC

- Current work
 - Automated Assembly
 - Semi-Automated Assembly
- Robotics
 - Proposal submitted to NSF

Roofs: domes, arches, flying buttresses. Etc.

What is Future of Innovation in Masonry?

- Look back at this question:
- Why Are There So Few Innovations in Masonry?
- Clayford T. Grimm, 1988
- This Q was posed to a steering committee
 - Workshop on Masonry
 - Sponsored by NSF
- Committee Members Included:
 - NCMA
 - Masonry Institute of America
 - Clemson University

Why Are There So Few Innovations in Masonry? (1988)

- 1. Tort Law
- 2. Bureaucratic Building Code Process
- 3. Unfunded Process of Writing Consensus Standards
- 4. Industry Fragmentation "Economic pressures for fast construction time leave little time for the learning curve required by new ideas. The construction industry mind-set supports the status quo."
- 5. Research Fragmentation
- Educators teach what they know (few know masonry)
- Designers are reluctant to use masonry structurally because of poor jobsite quality control
- Academics who dream up new names for old ideas and make a career out of it.
- 9. Designers who don't care about mason productivity.
- 10. Lack of financial incentive.

Why Are There So Few Innovations in Masonry?

- The Question Persists
 - 31 years later
- "It is a mature technology"
 - No room for any improvement, after so long
- Much contemporary research looks back in time
 - Understanding previous achievements
 - Jacques Heyman, for example.
- Old ideas re-introduced as "new"
 - Catalan arches, 14th century Valencia, Spain
 - Guastavino Arches, 19th Century
 - Current work at M.I.T.

What is Future of Innovation in Masonry?

- No Crystal ball
- Educated guesses
 - Informed by technology development
- BIM, Masonry
 - Expected to shape the future of design
 - Automated, semi-automated
- Governed –in part- by economics
- Masonry will win on *price*

- Additive Maufacturing
 - The Future
- 3D Printing
 - In its infancy
 - Not attractive, unappealing
 - Creates opportunity for masonry
- Using CMU as an element in additive manufacturing
- Deposition of mortar using 3D techniques

- Sensitivity to Climate Change
- Create fewer GHG's
- Able to withstand severe weather events
 - Resulting from Climate Change
 - Tornadoes
 - Hurricanes
 - Drought, wildfires
- Self-healing concrete
 - biocements

- Entirely new applications
 - Water Storage
 - Septic tanks
- Boats, Vessels, Barges
- Bridges
 - FRP rebar, rust proof
 - Infrastructure (culverts, etc.)
- Seawalls, levees
 - Flood protection

- New Companies are setting the example:
 - Construction Robotics
 - S.A.M.
 - MULE
 - Fastbrick Robotics
 - Hadrian X
 - bioMASON
 - Biocements
 - ECOncrete
 - Italcementi
 - i.light

- Blast and Ballistic Applications
- Defense
- Hardened Structures
- Seismic
- Severe Weather Events
- Air as support for masonry
- Thermal insulation inserts

Courtesy: ProtectiFlex LLC

- Prediction: Masonry will become central to additive manufacturing
- Economical
- Attractive
- Builds on what is known
- Long Productive future for the Industry

Successful Innovation will occur when creative ideas exist in a balance between the *familiar* and the *new*.

Presentation on My Company's Technology

- Learn More
- Specific examples
- Innovative Technology Session

Questions?

My information:

Peter Roberts

President, Spherical Block LLC

1718 Moland Rd., Alfred Station, NY 14803

Email: Roberts.peter01@gmail.com

Cell: (585) 466-6046

Acknowledgements

- Thank you!
- Dr. Linda Molnar
- Dr. Rajesh Mehta
- Dr. Ehsan Ghotbi
- Patrick Palmer
- Ben Palmer
- NCMA
- TMS

